1.- DATOS DE LA ASIGNATURA

Nombre de la asignatura: **Dinámica**

Carrera: Ingeniería Electromecánica

Clave de la asignatura: **EMM - 0511**

Horas teoría-horas práctica-créditos 3 – 2 – 8

2.- HISTORIA DEL PROGRAMA

Lugar y fecha de elaboración o revisión	Participantes	Observaciones (cambios y justificación)
Instituto Tecnológico de	Representante de las	Reunión Nacional de
Ocotlán del 23 al 27	academias de	Evaluación Curricular de la
agosto 2004.	ingeniería	Carrera de Ingeniería
	Electromecánica de los Institutos Tecnológicos.	Electromecánica
Instituto Tecnológico de Reynosa	Academias de Ingeniería Electromecánica	Análisis y enriquecimiento de las propuestas de los programas diseñados en la reunión nacional de evaluación
Instituto Tecnológico de	Comité de	Definición de los programas
	Consolidación de la	de estudio de la carrera de
febrero 2005	carrera de Ingeniería Electromecánica.	Ingeniería Electromecánica.

3.- UBICACIÓN DE LA ASIGNATURA

a). Relación con otras asignaturas del plan de estudio

Anteriores			
Asignaturas	Temas		
Matemáticas I	Derivadas y aplicación.		
Matemáticas II	Diferenciales. Integrales definidas e indefinidas. Aplicaciones de la integral.		
Estática	Análisis de la partícula. Fricción.		

Po	ste	riores	
Asignaturas		Temas	
Mecánica fluidos.	de	Hidrodinámica. Flujos externos. Flujo en tuberías	S.
Sistemas maquinas fluidos.	y de	Bombas centrifugas. Bombas axiales Bombas desplazamiento positivo. Ventiladores.	de
Análisis y sínte de mecanismos.	esis	Mecanismos articulados. Mecanismos	V
		especiales robóticos.	у

b). Aportación de la asignatura al perfil del egresado

Conocer y aplicar los conceptos fundamentales de la dinámica en la solución de problemas.

4.- OBJETIVO(S) GENERAL(ES) DEL CURSO

Identificará y usará las leyes y principios fundamentales de la cinemática y cinética en la solución de problemas reales.

5.- TEMARIO

Unidad	Temas	Subtemas		
1	Cinemática de Partículas	1.1	Desplazamiento, velocidad y aceleración.	
		1.2	Movimiento rectilíneo uniforme	
		1.3	Movimiento rectilíneo uniformemente acelerado	
		1.4	Movimiento de varias partículas (dependientes y relacionales)	
		1.5	Solución gráfica	
		1.6	Movimiento curvilíneo: posición,	

		1.7	desplazamiento, velocidad y aceleración angular.		
		1.8	1.8 Movimiento relativo a un sistema de referencia en translación.		
		1.9	Componente tangencial y normal		
			O Componente radial y transversal		
2	Cinemática de Cuerpos		Introducción		
	Rígidos	2.2	Translación		
		2.3	Rotación con respecto a un eje fijo		
			2.3.1 Ecuaciones de movimiento de rotación		
		2.4	Movimiento general en el plano		
			2.4.1 Ecuaciones que rigen en el		
			movimiento general en el plano.		
			2.4.2 Solución de problemas en forma		
			trigonométrica y en forma		
			vectorial		
			2.4.3 Centros instantáneos		
3	Cinética de Partículas	3.1	2.4.4 Aceleración de Coriolisis. Leyes del movimiento de Newton		
3	Cirietica de Particulas	3.1	3.1.1 Segunda ley de Newton		
			3.1.2 Ecuaciones de movimiento		
			3.1.3 Equilibrio dinámico		
		3.2			
		0.2	3.2.1 Trabajo de una fuerza		
			3.2.2 Energía cinética		
			3.2.3 Principio del trabajo y energía		
			3.2.4 Potencia y eficiencia		
			3.2.5 Energía potencial.		
			3.2.6 Fuerzas conservativas		
			3.2.7 Principio de la conservación de		
			la energía.		
4	Cinética de Sistemas de	4.1	Impulso y cantidad de movimiento para		
	Partículas		una partícula y un sistema de las		
			partículas.		
			4.1.1 Principio del impulso y la		
			cantidad de movimiento.		
			4.1.2 Impacto 4.1.3 Cantidad de moviendo lineal y		
			angular de un sistema de		
			partículas		
5	Cinética de los Cuerpos	5.1	Ecuaciones del movimiento de un		
	Rígidos	J. 1	cuerpo rígido		
		5.2	Momento angular de un cuerpo rígido		
	1		5		

			en el plano		
		E 2	•		
		5.3	Movimiento de un cuerpo rígido		
			5.3.1 Principio de D'Alembert		
			5.3.2 Translación, rotación centroidal		
			y movimiento general		
		5.4	Trabajo y energía		
			5.4.1 Trabajo de una fuerza		
			5.4.2 Energía cinética		
			5.4.3 Principio de la conservación de		
			la energía		
			5.4.4 Potencia		
			5.4.5 Principio del impulso y de la		
			cantidad de movimiento		
6	Vibraciones Mecánicas	6.1	Vibraciones sin amortiguamiento		
		6.2	Vibraciones amortiguadas		

6.- APRENDIZAJES REQUERIDOS

- Conocer la derivada
- La integral definida e indefinida
- Vectores.

7.- SUGERENCIAS DIDÁCTICAS

- Realizar prácticas y reportes
- Talleres de solución de casos prácticos tanto en clase como en laboratorio.
- Organizar sesiones grupales de discusión de conceptos.
- Solución de ejercicios en el aula
- Elaboración de modelos didácticos para la comprobación práctica de situaciones dinámicas
- Lecturas comentadas en el aula
- Utilizar software para la simulación y comprobación de ejercicios
- Exposiciones
- Emplear diversas dinámicas grupales para la solución de problemas
- Elaboración de problemarios
- Trabajo en equipo e individuales
- Leer y comentar por equipos en plenaria en el aula los diversos trabajos encargados
- Investigación documental

8.- SUGERENCIAS DE EVALUACIÓN

- Trabajos de investigación
- Prácticas

- Solución de problemas, individual, por equipos, ante el grupo, por medio de software, pizarrón, en su libreta, entre otros.
- Evaluación escrita
- Entrega de problemarios
- Participación en clase
- Exposiciones
- Entrega de Trabajos en equipo e individuales
- Entrega de reportes de prácticas.
- La participación individual y por equipos en plenaria en el aula de los diversos trabajos encargados
- Investigación documental

9.- UNIDADES DE APRENDIZAJE

Unidad 1.- Cinemática de Partículas

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
Reconocerá e identificará las variables físicas que intervienen en el movimiento de las partículas sin importar la causa que lo produce	 Definir las variables en un reporte de los primeros estudios de las partículas en movimiento. Leer y comentar por equipos en plenaria en el aula los diversos trabajos encargados. Elaborar modelos didácticos para la comprobación. Elaborar graficas en el aula o laboratorio de movimiento de partículas sobre trayectorias no lineales y con movimiento variable. Realizar e Interpretar las graficas y narrar las conclusiones mediante un debate. Dar solución a ejercicios de movimiento de partículas encargados o planteados en clase, y relatar su conclusión personal. Realizar prácticas en laboratorio, taller o aula y entregar el reporte correspondiente. 	1, 2, 3, 4, 5.

Unidad 2.- Cinemática de Cuerpos Rígidos

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
Reconocerá y utilizará los aspectos de la cinemática de los cuerpos rígidos en la solución de problemas.	 Exponer por equipos en el aula los diferentes tipos de movimiento de un cuerpo rígido obtenidos de diversas fuentes de información. Nombrar los momentos de inercia de un cuerpo rígido, y demostrar la aplicación en situaciones de ingeniería mediante un reporte en forma de lista. Resolver ejercicios en aula o problerario(s) que involucren el cálculo del momento de inercia de diferentes formas. Realizar practicas y entregar los reportes correspondientes 	1, 2, 3, 4, 5.

Unidad 3.- Cinética de Partículas

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
Definirá, explicará y empleará las leyes del movimiento y las causas que lo producen en la solución de problemas reales. Así mismo, al movimiento de partículas aplicando los conceptos de trabajo y energía, impulso y cantidad de movimiento e impacto	aprical j complaine and another metodoc	1, 2, 3, 4, 5.

Unidad 4.- Cinética de Sistemas de Partículas

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
Analizará el comportamiento de un sistema de partículas aplicando los conceptos de conservación del momento lineal y angular.	 Presentar un trabajo de investigación documental y discutir en clase el contexto en el cual Newton descubrió las leyes que llevan su nombre y su implicación o impacto en la ciencias Construir modelos didácticos para la comprobación de la conservación de la cantidad de movimiento lineal y angular. examinar y calcular ejercicios referentes a los conceptos de impacto, conservación de movimiento lineal y angular de un sistema de partículas. 	1, 2, 3, 4, 5.

Unidad 5.- Cinética de los Cuerpos Rígidos

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
Aplicará el método de la conservación de la energía al movimiento en el plano de un cuerpo rígido, con el objeto de conocer las expresiones de energía cinética de translación y rotación que caracterizan su comportamiento	 Discusión de lecturas en el aula sobre los conceptos de energía y sus expresiones matemáticas para diferentes movimientos de un cuerpo rígido. Analizar situaciones de sistemas mecánicos en donde intervengan fuerzas y reconocer la expresión de trabajo a usar. Fabricar modelos didácticos para la comprobación del momento angular y lineal de los cuerpos. Resolver problemas aplicando los métodos de la energía y momento angular y lineal, así como la conservación del momento . 	1, 2, 3, 4, 5.

Unidad 6.- Vibraciones Mecánicas

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
Conocerá el comportamiento de un cuerpo sujeto a vibraciones.	 Discutir en el aula los conceptos de vibración con y sin amortiguamiento y amortiguamiento. Elaborar modelos didácticos para la comprobación de los movimientos vibratorios sobre una partícula. Manipular las variables y simular sus cambios para observar e interpretar sus posibles efectos en el movimiento vibratorio. 	1, 2, 3, 4, 5.

10. FUENTES DE INFORMACIÓN

- 1. R.C. Hibbeler. Ingeniería Mecánica Dinámica. Editorial Prentice Hall Octava edición
- 2. Beer and Johnston. Mecánica vectorial para ingenieros. Dinámica. Editorial McGraw Hill. Séptima edición
- 3. Solar G., Jorge. Dinámica, Mecánica para Ingeniería. México. Addison Wesley. 1996
- 4. Cinemática y Dinámica Básicas para ingenieros. México, Trillas-Facultad de Ingeniería UNAM. 1989.
- 5. Bedfor, Anthony and Fowler, Wallace. Dinámica, Mecánica para Ingeniería. México. Addison Wesley, 1996.

11. PRÁCTICAS PROPUESTAS.

- 1. Calculo de posición y velocidad en el movimiento rectilíneo
- 2. Calculo de posición y velocidad en el movimiento curvilíneo
- 3. Simulación de la posición, velocidad y aceleración de un cuerpo en caída libre
- 4. Simulación de la posición, velocidad y aceleración de un cuerpo en tiro parabólico.
- 5. Obtención de gráficas de velocidad y aceleración de una partícula en trayectoria lineal.
- 6. Comprobación de la velocidad y aceleración del movimiento dependiente entre partículas.
- 7. Medición de los parámetros que caracterizan el comportamiento de las partículas y cuerpos en movimiento mediante el uso de un software

- 8. Simulación de un cuerpo rígido en movimiento vibratorio por medio de algún software.
- 9. Medición de amplitud y frecuencia de un cuerpo que se encuentra sujeto a vibración.